











### Contents

| IntroductionPa                              | ige  |
|---------------------------------------------|------|
| 1.0 Scope4                                  |      |
| 2.0 Type Designation4                       |      |
| 3.0 Ratings & Dimension4-                   | ~6   |
| 4.0 Structure                               | 3    |
| 5.0 Marking7                                | 7~8  |
| 6.0 Power rating                            | Э    |
| 7.0 Performance Specification               | 9~10 |
| 8.0 Explanation of Part No. System1         | 11   |
| 9.0 Ordering Procedure                      | 12   |
| 10.0 Standard Packing12-                    | ~13  |
| 11.0 Precaution for storage/Transportation1 | 14   |

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 2/14 |













File Name: Edition No. **Resistor Array Series** Date 2017/06/12 1  $\pm 1\%$  >  $\pm 5\%$  &  $0\Omega$ Amendment Record Signature Prescription of Checked by Edition Amend Page Amend Date Amended by amendment

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 3/14 |







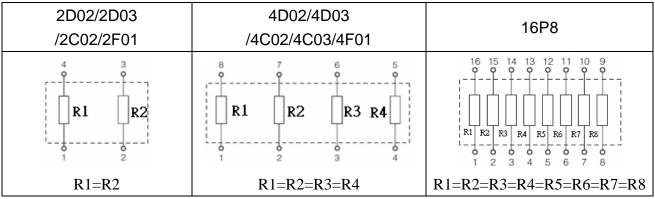




### 1.0 Scope:

This sheet is the statement of the Chip Resistor Array- Concave Terminal specification that UNIOHM'S productions can meet.

### 2.0 Type Designation:


The type designation shall be in the following from:

### **Example:**

| Туре | Power rating | Resistance tolerance | Nominal resistance |
|------|--------------|----------------------|--------------------|
| 4C02 | 1/16W        | J                    | 100Ω               |

### 3.0 Ratings & Dimension:

3.1 Equivalent Circuit Diagram:



### 3.2 Dimensions in mm:

| Convex Terminal type |           |      |  |  |  |  |  |
|----------------------|-----------|------|--|--|--|--|--|
| 2D02/2D03            | 4D02/4D03 | 16P8 |  |  |  |  |  |
|                      |           |      |  |  |  |  |  |

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 4/14 |

(ĮL)

245468

G

G

Т

 $\geq$ 





DEERA

(lļ)

2C02

L

10

VDE REG.-Nr.A759



Terminal Concave

| erminal   |  |
|-----------|--|
| 4C02/4C03 |  |
|           |  |

| Fla  | t Terminal |
|------|------------|
| 2F01 | 4F01       |
|      |            |

| Turne |           |           |           | Dimension | ns (mm)   |           |           |           |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Туре  | L         | w         | т         | A1        | A2        | В         | Р         | G         |
| 2D02  | 1.00±0.10 | 1.00±0.10 | 0.35±0.10 | 0.33±0.10 | /         | 0.15±0.05 | 0.65±0.05 | 0.25±0.10 |
| 4D02  | 2.00±0.10 | 1.00±0.10 | 0.45±0.10 | 0.40±0.05 | 0.30±0.05 | 0.20±0.15 | 0.50±0.05 | 0.30±0.15 |
| 2D03  | 1.60±0.15 | 1.60±0.15 | 0.50±0.10 | 0.60±0.15 | /         | 0.30±0.10 | 0.80±0.05 | 0.25±0.10 |
| 4D03  | 3.20±0.20 | 1.60±0.20 | 0.50±0.10 | 0.65±0.15 | 0.50±0.15 | 0.30±0.15 | 0.80±0.10 | 0.30±0.15 |
| 16P8  | 4.00±0.20 | 1.60±0.15 | 0.45±0.10 | 0.45±0.05 | 0.30±0.05 | 0.30±0.15 | 0.50±0.05 | 0.40±0.15 |
| 2C02  | 1.00±0.10 | 1.00±0.10 | 0.35±0.10 | /         | /         | 0.15±0.10 | /         | 0.30±0.10 |
| 4C02  | 2.00±0.10 | 1.00±0.10 | 0.45±0.10 | /         | /         | 0.15±0.10 | /         | 0.30±0.10 |
| 4C03  | 3.20±0.20 | 1.60±0.20 | 0.60±0.10 | /         | /         | 0.30±0.20 | /         | 0.40±0.10 |
| 2F01  | 0.80±0.10 | 0.60±0.10 | 0.35±0.10 | 0.30±0.10 | /         | 0.15±0.10 | 0.50±0.05 | 0.15±0.10 |
| 4F01  | 1.40±0.10 | 0.60±0.10 | 0.35±0.10 | 0.20±0.10 | /         | 0.15±0.10 | 0.40±0.05 | 0.15±0.10 |

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 5/14 |

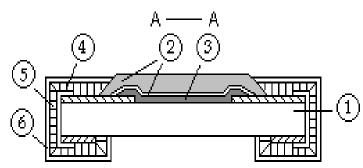
(l














3.3 Ratings:

| Туре | Rated<br>power<br>70°C | Max<br>Working<br>Voltage | Max<br>Overload<br>Voltage | Dielectric<br>Withstanding<br>Voltage        | Resistance<br>Range<br>±5%±1% | Temperature<br>Coefficient<br>PPM/℃ | Operating<br>Temperature | Resistance<br>Value of<br>Jumper | Rated<br>Current<br>of Jumper |    |
|------|------------------------|---------------------------|----------------------------|----------------------------------------------|-------------------------------|-------------------------------------|--------------------------|----------------------------------|-------------------------------|----|
| 2D02 | 1/16W                  | 50V                       | 100V                       | 100V                                         | 10 Ω ~1M Ω                    | ±200                                |                          |                                  |                               |    |
| 4D02 | 1/16W                  | 50V                       | 100V                       | 100V                                         | 10 Ω ~1M Ω                    | ±200                                |                          |                                  |                               |    |
| 2D03 | 1/16W                  | 50V                       | 100V                       | 100V                                         | <b>10</b> Ω ~1M Ω             | ±200                                |                          |                                  |                               |    |
| 4000 | 4/4 (2) 4/             | 50)/                      | 4001/                      | 300V   1 Ω ~1M Ω   ≥10 Ω:±200     <10 Ω:±400 | 4.0 414.0                     | ≥10Ω:±200                           |                          |                                  |                               |    |
| 4D03 | 1/16W                  | 50V                       | 100V                       |                                              |                               |                                     |                          |                                  |                               |    |
| 4DP3 | 1/10W                  | 50V                       | 100V                       | 300V                                         | 1Ω~1MΩ                        | ≥10Ω:±200                           |                          |                                  |                               |    |
| 4DP3 | 1/10//                 | 500                       | 1000                       | V 300V                                       | 1 S2 ~ HVI S2                 | <10 \lambda:±400                    | <b>-55℃~+155℃</b>        | <50m Ω                           | 1A                            |    |
| 16P8 | 1/16W                  | 50V                       | 100V                       | 300V                                         | 300V 1 Ω ~1M Ω                | ≥10 Ω:±200                          |                          |                                  |                               |    |
| IOFO | 1/10//                 |                           | 1000                       |                                              |                               | <10 \lambda:±400                    |                          |                                  |                               |    |
| 2C02 | 1/16W                  | 50V                       | 100V                       | 100V                                         | 10 Ω ~1M Ω                    | ±200                                |                          |                                  |                               |    |
| 4C02 | 1/16W                  | 50V                       | 100V                       | 100V                                         | 10 Ω ~1M Ω                    | ±200                                |                          |                                  |                               |    |
| 4002 | 1/16\\/                | 50)/                      | 100\/                      | 2001/                                        | 10 110                        | ≥10Ω:±200                           |                          |                                  |                               |    |
| 4C03 | 1/16W                  | 50V                       | 100V                       | 300V                                         | 1 Ω ~1 <b>Μ</b> Ω             | <10 \lambda:±400                    |                          |                                  |                               |    |
| 2F01 | 1/20W                  | 12.5V                     | 25V                        | /                                            | / <b>10</b> Ω ~1 <b>M</b> Ω   | ±200                                |                          |                                  | <b>&lt;50m</b> Ω              | 1A |
| 4F01 | 1/20W                  | 12.5V                     | 25V                        | /                                            | 10 Ω ~1M Ω                    | ±200                                | -55℃~+125℃               | <0011152                         | IA                            |    |

### 4.0 Structure:



- 1: High purity alumina substrate
- 2: Protective covering
- 3: Resistive covering
- 4: Termination (inner) Ag/Pd
- 5: Termination (between) Ni plating
- 6: Termination (outer) Sn plating

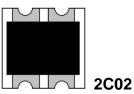
| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 6/14 |

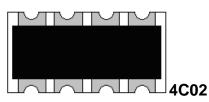


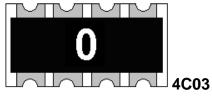






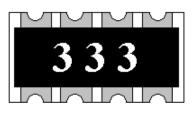




### 5.0 Marking:

5.1 Normal for 2C02 & 4C02 size, no marking on the body, 0Ω resistors is no marking too. Normal of 4C03 size, the marking as following:

### **EXAMPLE:**








5.2 ±5%Tolerance of 4C03 size: the first two digits are significant figures of resistance and the third denotes number of zeros following.

**EXAMPLE:** 



 $33000 \rightarrow 33 \text{K}\Omega$ 

5.3 ±1%Tolerance of 4C03, size: first three digits are significant figures of resistance and the fourth denotes number of zeros following.

### EXAMPLE:

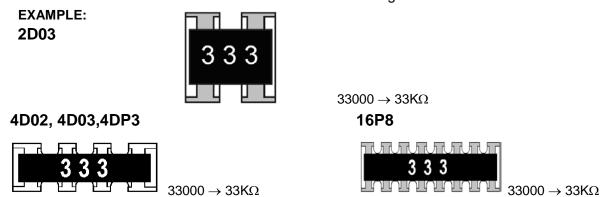


 $2701 \rightarrow 2.7 \text{K}\Omega$ 

5.4 Normal for 2D02 sizes, no marking on the body.0Ω resistors is no marking too EXAMPLE:

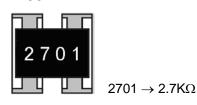


| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 7/14 |


(U

245468






5.5 ±5%Tolerance of 4D02, 2D03, 4D03, 4DP3and 16P8 size: the first two digits are significant figures of resistance and the third denotes number of zeros following

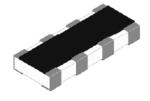


5.6 ±1%Tolerance of 4D02, 2D03, 4D03, 4DP3and 16P8 size: first three digits are significant figures of resistance and the fourth denotes number of zeros following

# EXAMPLE: 2D03

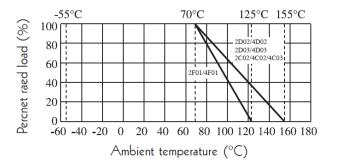


4D02, 4D03 16P8 2701  $2701 \rightarrow 2.7KΩ$ 16P8 2701  $2701 \rightarrow 2.7KΩ$ 


5.7  $0^{\Omega}$  Normal of 4D02, 4D03, 16P8 size, the marking as following:

|              |         |               | 16P8       |         |            |      |  |  |  |
|--------------|---------|---------------|------------|---------|------------|------|--|--|--|
| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |  |  |  |
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 8/14 |  |  |  |




5.8 Normal for 2F01, 4F01 sizes, no marking on the body.0  $\Omega$  resistors is no marking too





### 6.0 Power Rating:

Resistors shall have a power rating based on continuous load operation at an ambient temperature from  $-55^{\circ}$ C to  $70^{\circ}$ C. For temperature in excess of  $70^{\circ}$ C, the load shall be derate as shown in figure 1



### 6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$\mathsf{RCWV} = \sqrt{\mathsf{P} \times \mathsf{R}}$$

Where: RCWV commercial-line frequency and waveform (Volt.)

R = nominal resistance (OHM)

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less.

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page |
|--------------|---------|---------------|------------|---------|------------|------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 9/14 |











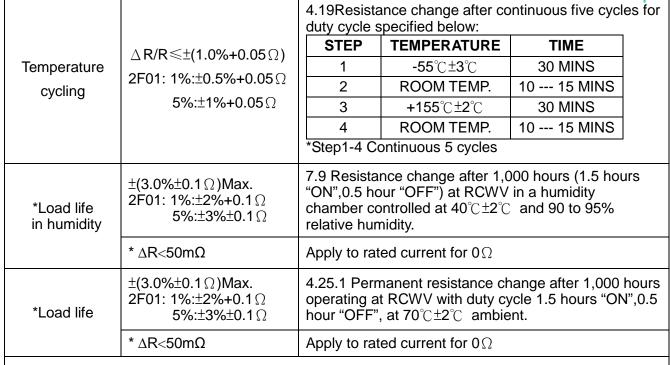


### 7.0 Performance Specification:

| Characteristic                          | Limits                                                                                 | Test Method<br>(JIS-C-5201&5202)                                                                                                                                                             |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Temperature<br>Coefficient              | Reference 3.3                                                                          | $\begin{array}{l} \text{4.8 natural resistance changes per temp. Degree} \\ \text{centigrade} \\ \hline \\ $ |  |  |  |  |  |
| *Short-time<br>overload                 | ±(2%+0.1 Ω) MAX<br>2F01: 1%:±1%+0.05 Ω<br>5%:±2%+0.05 Ω                                | 4.13 Permanent resistance change after the application of 2.5 times RCWV for 5 seconds.                                                                                                      |  |  |  |  |  |
|                                         | * $\Delta R < 50 m\Omega$                                                              | Apply max overload current for 0 $\Omega$                                                                                                                                                    |  |  |  |  |  |
| * Insulation resistance                 | ≥ <b>1,000 M</b> Ω                                                                     | 4.6 the measuring voltage shall be ,measured with a direct voltage of $(100\pm15)v$ or a voltage equal to the dielectric withstanding voltage., and apply for 1min                           |  |  |  |  |  |
| Terminal<br>bending                     | ±(1%+0.05Ω) Max                                                                        | 4.33 Twist of test board:<br>Y/x = 3/90 mm for 60Seconds                                                                                                                                     |  |  |  |  |  |
| * Dielectric<br>withstanding<br>voltage | No evidence of flashover<br>mechanical damage,<br>arcing or insulation<br>breaks down. |                                                                                                                                                                                              |  |  |  |  |  |
| Soldering<br>heat                       | Resistance change rate<br>is:<br>$\pm(1\%+0.05\Omega)$ Max                             | 4.18 Dip the resistor into a solder bath having a temperature of $260^{\circ}C \pm 5^{\circ}C$ and hold it for $10\pm 1$ seconds.                                                            |  |  |  |  |  |
|                                         | 95% coverage Min.                                                                      | Wave solder:<br>Test temperature of solder: 245°C±3°C dipping time in<br>solder: 2-3 seconds.                                                                                                |  |  |  |  |  |
| *Solderability                          | Go up tin rate bigger<br>than half of end pole                                         | Reflow:   250   200   150   150   90±30s   100   50   HOT UP TIME   SOLDER TIME                                                                                                              |  |  |  |  |  |

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page         |
|--------------|---------|---------------|------------|---------|------------|--------------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | <b>10/14</b> |
















The resistors of  $0\Omega$  only can do the characteristic noted of \*

### 8.0 Explanation of Part No. System:

The standard Part No. includes 14 digits with the following explanation:

- 8.1 This is to indicate the Chip Array Resistor size.
- Example: 2D02,4D02,2D03,4D03,4DP3,16P8,2C02, 4C02, 4C03,2F01,4F01
- 8.2  $5^{\text{th}} \sim 6^{\text{th}}$  digits:
  - 8.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers, The following codes are used; and please refer to the following chart for detail:

W=Normal Size; "1" ~ "G" to denotes "1" ~ "16" as Hexadecimal:

1/16W~1W:

| Wattage     | 1/2 | 1/8 | 1/10 | 1/16 |
|-------------|-----|-----|------|------|
| Normal Size | W2  | W8  | WA   | WG   |

8.2.2 For power rating less than 1 watt, the 5th digit will be the letters W to represent the size required & the 6th digit will be a number or a letter code.

Example: WG=1/16W

8.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

> F=±1% G=±2% J=±5% K= ±10%

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page  |
|--------------|---------|---------------|------------|---------|------------|-------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 11/14 |











- 8.4 The 8th to 11th digits is to denote the Resistance Value.
  - 8.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

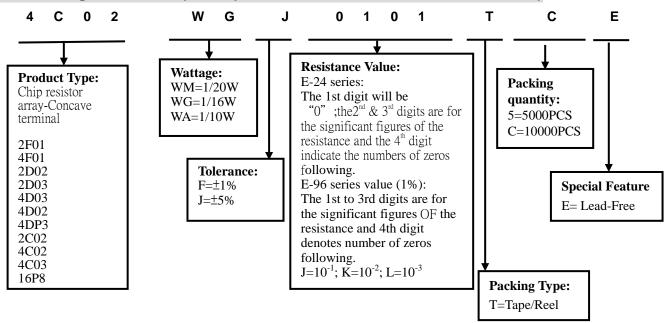
For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

8.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0=10^{0}$$
  $1=10^{1}$   $2=10^{2}$   $3=10^{3}$   $4=10^{4}$   $5=10^{5}$   $6=10^{6}$   $J=10^{-1}$   $K=10^{-2}$   $L=10^{-3}$   $M=10^{-4}$ 

8.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:


- C=Bulk in (Chip Product) T=Tape/Reel
- 8.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

| 1=1000pcs | 2=2000pcs  | 3=3000pcs  | 4=4000pcs  |
|-----------|------------|------------|------------|
| 5=5000pcs | C=10000pcs | D=20000pcs | E=15000pcs |

8.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

E=For "Environmental Protection, Lead Free type" of Chip.

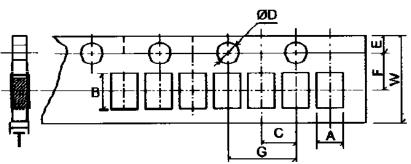
9.0 Ordering Procedure: (Example: 4C02 1/16W  $\pm$ **5% 100**  $\Omega$  **T/R-10000** )



| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page  |
|--------------|---------|---------------|------------|---------|------------|-------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 12/14 |

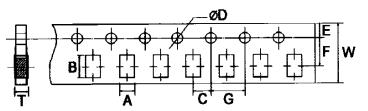
(Ļ











10.0 Packaging:

**10.1 Tapping Dimension:** 



### Unit: mm

| ТҮРЕ      | A ±0.2 | B ±0.2 | C±0.05 | +0.1<br>⊕D<br>-0 | E±0.1 | F±0.05 | G±0.1 | W±0.2 | T±0.1 |
|-----------|--------|--------|--------|------------------|-------|--------|-------|-------|-------|
| 2D02,2C02 | 1.20   | 1.20   | 2.00   | 1.50             | 1.75  | 3.50   | 4.00  | 8.00  | 0.45  |
| 4D02,4C02 | 1.20   | 2.20   | 2.00   | 1.50             | 1.75  | 3.50   | 4.00  | 8.00  | 0.70  |
| 2F01      | 0.79   | 1.00   | 2.00   | 1.50             | 1.75  | 3.50   | 4.00  | 8.00  | 0.50  |
| 4F01      | 0.90   | 1.70   | 2.00   | 1.50             | 1.75  | 3.50   | 4.00  | 8.00  | 0.50  |



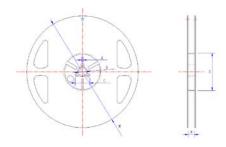
Unit: mm

| TYPE      | A ±0.2 | B ±0.2 | C±0.05 | +0.1<br>ΦD<br>-0 | E±0.1 | F±0.05 | G±0.1 | W±0.2 | T±0.1 |
|-----------|--------|--------|--------|------------------|-------|--------|-------|-------|-------|
| 4D03,4C03 | 2.00   | 3.60   | 2.00   | 1.50             | 1.75  | 3.50   | 4.00  | 8.00  | 0.83  |
| 2D03      | 1.90   | 1.90   | 2.00   | 1.50             | 1.75  | 3.50   | 4.00  | 8.00  | 0.83  |
| 16P8      | 1.80   | 4.30   | 2.00   | 1.50             | 1.75  | 5.50   | 4.00  | 12.00 | 0.75  |

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page  |
|--------------|---------|---------------|------------|---------|------------|-------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 13/14 |














### **10.2 Dimension:**



Unit: mm

| TYPE | Quantity per Reel | A ± 0.5 | B ± 0.5 | C ± 0.5 | D ± 1.0 | M ± 2.0 | W ± 1.0 |
|------|-------------------|---------|---------|---------|---------|---------|---------|
| 2D02 | 10,000PCS         | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 4D02 | 10,000PCS         | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 2D03 | 5,000PCS          | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 4D03 | 5,000PCS          | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 4DP3 | 5,000PCS          | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 16P8 | 4,000PCS          | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 13.8    |
| 2C02 | 10,000PCS         | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 4C02 | 10,000PCS         | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 4C03 | 5,000PCS          | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 2F01 | 10,000PCS         | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |
| 4F01 | 10,000PCS         | 2.0     | 13.0    | 21.0    | 60.0    | 178.0   | 10.0    |

### **11.0 Precaution for storage/Transportation:**

11.1 UNIOHM recommend the storage condition temperature: 15°C ~35°C, humidity :25%~75%. (Put condition for individual product)

Even under UNIOHM recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

- 11.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 11.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
  - a. Storage in high Electrostatic
  - b. Storage in direct sunshine . rain and snow or condensation
  - c. Where the products are exposed to sea winds or corrosive gases, including Cl<sub>2</sub>, H<sub>2</sub>S<sub>3</sub> NH<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub>.

| Approved     | Checked | Prepared      | File NO.   | Edition | Date       | Page  |
|--------------|---------|---------------|------------|---------|------------|-------|
| William Zhao | Ted Hsu | Chengxia Tang | JLC-01-015 | 1       | 2017/06/12 | 14/14 |