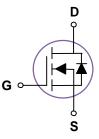


Features


- Advanced Trench MOS Technology
- Low Gate Charge
- Low R_{DS(ON)}
- 100% EAS Guaranteed
- Green Device Available

Applications

- Power Management in Desktop Computer or DC/DC Converters.
- Isolated DC/DC Converters in Telecom and Industrial.

S [1 • 8] D S [2 7] D S [3 6] D G [4 5] D

Absolute Maximum Ratings

Symbol Parameter		Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @Tc=25°C	Continuous Drain Current ^{1,6}	68	А
I _D @T _C =70°C	Continuous Drain Current ^{1,6}	48	А
Ідм	Pulsed Drain Current ²	140	A
EAS	Single Pulse Avalanche Energy ³	61	mJ
las	Avalanche Current	35	А
P _D @T _C =25°C	Total Power Dissipation ⁴	108	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Вела	Thermal Resistance Junction-Ambient $^{1}(t \leq 10s)$		25	°C/W
Neja	Thermal Resistance Junction-Ambient ¹		55	°C/W
Rejc	Thermal Resistance Junction-Case ¹		1.15	°C/W

VOV	2018	Version1.1

Product Summary

Rol	1s

V _{DS}	100	V
R _{DS(on),Typ} @ VGs=10V	5.9	mΩ
I _D	68	Α

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
Proven	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =13.5A		5.9	8	mΩ
Rds(on)	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =11.5A		7.6	10.5	1115.2
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2		2.3	V
DSS	Droin Source Lookage Current	$V_{DS}=80V$, $V_{GS}=0V$, $T_{J}=25^{\circ}C$			1	uA
IDSS	Drain-Source Leakage Current	V_{DS} =80V , V_{GS} =0V , T_{J} =55°C			5	uA
lgss	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		85		S
Qg	Total Gate Charge (10V)			45		
Qg	Total Gate Charge (4.5V)			19.3		-0
Qgs	Gate-Source Charge			9.5		nC
Qgd	Gate-Drain Charge			4.8		
Td(on)	Turn-On Delay Time			10		
Tr	Rise Time	VDD=50V , VGS=10V , RG=3 Ω ,		6.5		
Td(off)	Turn-Off Delay Time	ID=13.5A		45		ns
Tf	Fall Time			7.5		
Ciss	Input Capacitance			3320		
Coss	Output Capacitance	VDS=50V , VGS=0V , f=1MHz		605		pF
Crss	Reverse Transfer Capacitance			20		

Diode Characteristics

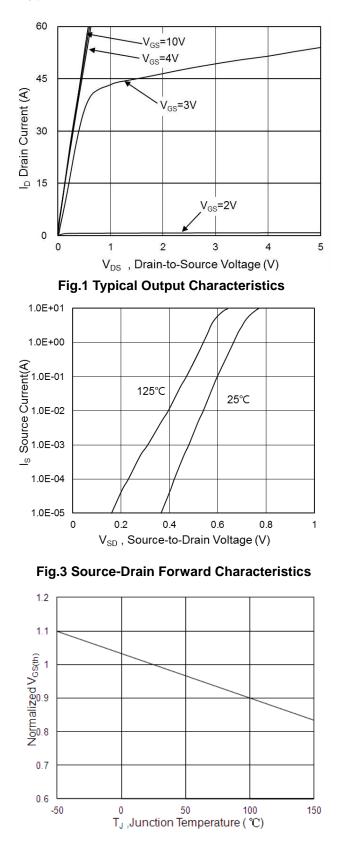
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5,6}	$V_G=V_D=0V$, Force Current			48	А
Vsd	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.1	V
t _{rr}	Reverse Recovery Time	IF=13.5A , di/dt=100A/μs ,		33		nS
Qrr	Reverse Recovery Charge	TJ=25℃		150		nC

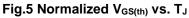
Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.3mH,I_{AS}=35A


4.The power dissipation is limited by 150°C junction temperature


5. The data is theoretically the same as I_{D} and I_{DM} , in real applications , should be limited by total power dissipation.

6. The maximum current rating is package limited.

Typical Characteristics

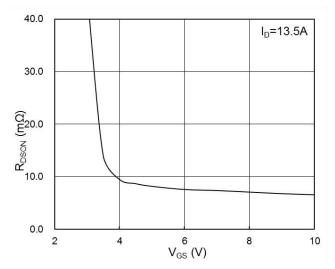
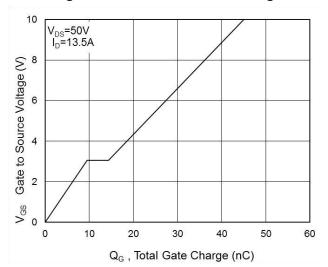



Fig.2 On-Resistance vs. G-S Voltage

Fig.4 Gate-Charge Characteristics

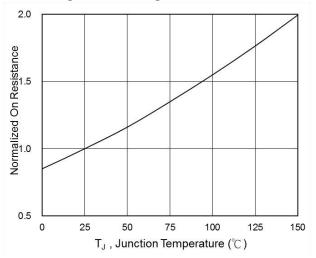
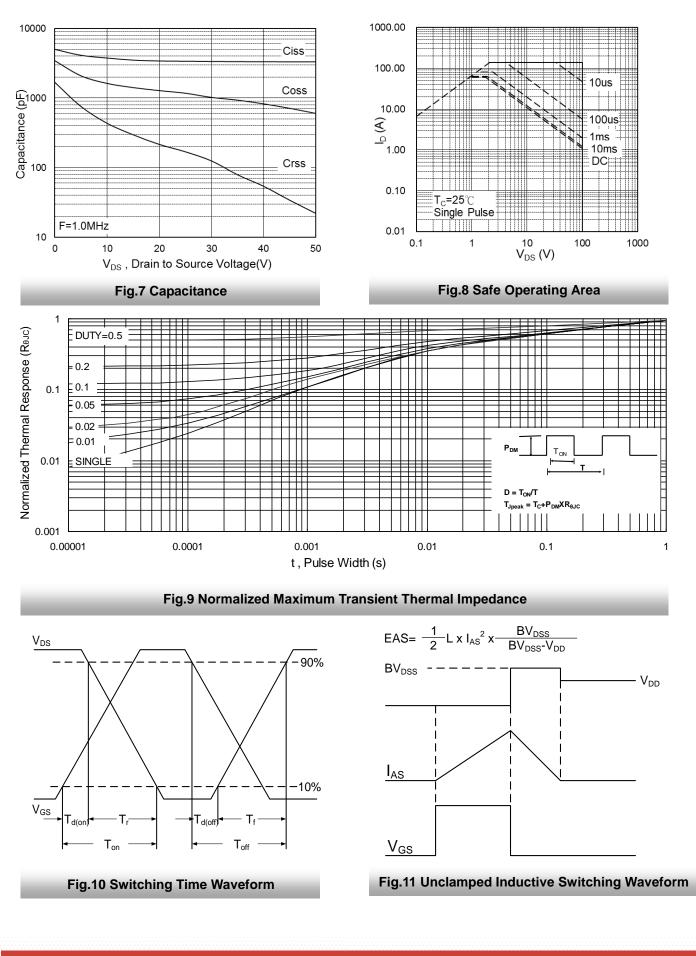
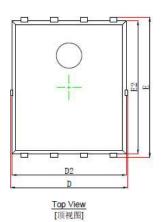
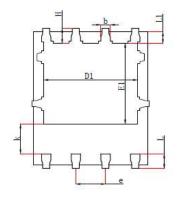
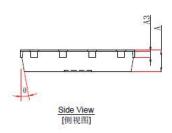



Fig.6 Normalized RDSON vs. TJ


Ordering and Marking Information


Ordering Device No.	Marking	Package	Packing	Quantity
ASDM100R066NQ-R	100R066N	DFN5x6-8	Tape&Reel	4000/Reel

PACKAGE	MARKING
DFN5x6-8	AS □□□ 100R066N □□□□ → Date Code



DFN5x6-8 PACKAGE IN FORMATION

<u>Bottom View</u> [背视图]

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	0.900	1.000	0.035	0.039	
A3	0.254	REF.	0.010	REF.	
D	4.944	5.096	0.195	0.201	
E	5.974	6.126	0.235	0.241	
D1	3.910	4.110	0.154	0.162	
E1	3.375	3.575	0.133	0.141	
D2	4.824	4.976	0.190	0.196	
E2	5.674	5.826	0.223	0.229	
k	1.190	1.390	0.047	0.055	
b	0.350	0.450	0.014	0.018	
е	1.270	TYP.	0.050	TYP.	
L	0.559	0.711	0.022	0.028	
L1	0.424	0.576	0.017	0.023	
Н	0.574	0.726	0.023	0.029	
θ	10°	12°	10°	12°	

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume .

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com