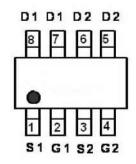
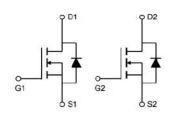


#### **Features**

- Dual N-Channel,5V Logic Level Control
- Enhancement mode
- · Fast Switching
- · High Effective

# **Product Summary**





| V <sub>DS</sub>      | 30 | V  |
|----------------------|----|----|
| RDS(on),max.@VGS=10V | 20 | mΩ |
| ID                   | 9  | Α  |

## **Applications**

- · Power Management in Inverter System
- · Synchronous Rectification







### Maximum ratings, at $T_i$ =25 °C, unless otherwise specified

| Symbol               | Parameter                                                                               | Rating | Unit       |    |
|----------------------|-----------------------------------------------------------------------------------------|--------|------------|----|
| V <sub>(BR)DSS</sub> | V <sub>(BR)DSS</sub> Drain-Source breakdown voltage                                     |        |            | V  |
| I <sub>s</sub>       | Diode continuous forward current T <sub>A</sub> =25°C                                   |        | 9          | Α  |
|                      | $I_D$ Continuous drain current @Vgs=10V $ \frac{T_A = 25^{\circ}C}{T_A = 70^{\circ}C} $ |        | 9          | А  |
| l <sub>D</sub>       |                                                                                         |        | 5.0        | А  |
| I <sub>DM</sub>      | Pulse drain current tested ①                                                            |        | 36         | Α  |
| EAS                  | Avalanche energy, single pulsed ②                                                       |        |            | mJ |
| P <sub>D</sub>       | Maximum power dissipation $T_A = 25^{\circ}C$                                           |        | 2.5        | W  |
| Vgs                  | Gate-Source voltage                                                                     | ±20    | V          |    |
| MSL                  |                                                                                         |        | Level 3    |    |
| T <sub>STG</sub>     | Storage temperature range                                                               |        | -55 to 150 | °C |

#### **Thermal Characteristics**

| Symbol           | Parameter                              | Typical | Unit |
|------------------|----------------------------------------|---------|------|
| R <sub>θJL</sub> | Thermal Resistance-Junction to Lead    | 40      | °C/W |
| $R_{\theta JA}$  | Thermal Resistance-Junction to Ambient | 50      | °C/W |



## Electrical Characteristics@T<sub>j</sub>=25°C(unless otherwise specified)

|                                                | _                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Parameter                                      | Test Conditions                                                                                                                                                                                                                                                                                                                                                                             | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Тур.                                                  | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Units                                                 |
| Drain-Source Breakdown Voltage                 | V <sub>GS</sub> =0V, I <sub>D</sub> =250uA                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                     |
| Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =10V, I <sub>D</sub> =8A                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.5                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{m}\Omega$                                    |
|                                                | V <sub>GS</sub> =4.5V, I <sub>D</sub> =6A                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.5                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{m}\Omega$                                    |
| Gate Threshold Voltage                         | $V_{DS}=V_{GS}$ , $I_{D}=250uA$                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                     |
| Forward Transconductance                       | $V_{DS}$ =10V, $I_{D}$ =8A                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                     |
| Drain-Source Leakage Current                   | V <sub>DS</sub> =30V, V <sub>GS</sub> =0V                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uA                                                    |
| Gate-Source Leakage                            | V <sub>GS</sub> = <u>+</u> 12V, V <sub>DS</sub> =0V                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                     | <u>+</u> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                                    |
| Total Gate Charge                              | I <sub>D</sub> =8A                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nC                                                    |
| Gate-Source Charge                             | V <sub>DS</sub> =15V                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nC                                                    |
| Gate-Drain ("Miller") Charge                   | V <sub>GS</sub> =4.5V                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nC                                                    |
| Turn-on Delay Time                             | V <sub>DS</sub> =15V                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| Rise Time                                      | I <sub>D</sub> =1A                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| Turn-off Delay Time                            | $R_G=3.3\Omega,V_{GS}=10V$                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| Fall Time                                      | R <sub>D</sub> =15Ω                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                    |
| Input Capacitance                              | V <sub>GS</sub> =0V                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 344                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pF                                                    |
| Output Capacitance                             | V <sub>DS</sub> =25V                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pF                                                    |
| Reverse Transfer Capacitance                   | f=1.0MHz                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pF                                                    |
| Gate Resistance                                | f=1.0MHz                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ω                                                     |
|                                                | Drain-Source Breakdown Voltage  Static Drain-Source On-Resistance <sup>2</sup> Gate Threshold Voltage  Forward Transconductance  Drain-Source Leakage Current  Gate-Source Leakage  Total Gate Charge  Gate-Source Charge  Gate-Drain ("Miller") Charge  Turn-on Delay Time  Rise Time  Turn-off Delay Time  Fall Time  Input Capacitance  Output Capacitance  Reverse Transfer Capacitance | $\begin{array}{c} \text{Drain-Source Breakdown Voltage} & V_{\text{GS}} = 0\text{V}, \ I_{\text{D}} = 250\text{uA} \\ \\ \text{Static Drain-Source On-Resistance}^2 & V_{\text{GS}} = 10\text{V}, \ I_{\text{D}} = 8\text{A} \\ \\ V_{\text{GS}} = 4.5\text{V}, \ I_{\text{D}} = 6\text{A} \\ \\ \text{Gate Threshold Voltage} & V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = 250\text{uA} \\ \\ \text{Forward Transconductance} & V_{\text{DS}} = 10\text{V}, \ I_{\text{D}} = 8\text{A} \\ \\ \text{Drain-Source Leakage Current} & V_{\text{DS}} = 30\text{V}, \ V_{\text{GS}} = 0\text{V} \\ \\ \text{Gate-Source Leakage} & V_{\text{GS}} = \pm 12\text{V}, \ V_{\text{DS}} = 0\text{V} \\ \\ \text{Total Gate Charge} & I_{\text{D}} = 8\text{A} \\ \\ \text{Gate-Source Charge} & V_{\text{DS}} = 15\text{V} \\ \\ \text{Gate-Drain ("Miller") Charge} & V_{\text{GS}} = 4.5\text{V} \\ \\ \text{Turn-on Delay Time} & V_{\text{DS}} = 15\text{V} \\ \\ \text{Rise Time} & I_{\text{D}} = 1\text{A} \\ \\ \text{Turn-off Delay Time} & R_{\text{G}} = 3.3\Omega, V_{\text{GS}} = 10\text{V} \\ \\ \text{Fall Time} & R_{\text{D}} = 15\Omega \\ \\ \text{Input Capacitance} & V_{\text{GS}} = 0\text{V} \\ \\ \text{Output Capacitance} & V_{\text{DS}} = 25\text{V} \\ \\ \text{Reverse Transfer Capacitance} & f = 1.0\text{MHz} \\ \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} \text{Drain-Source Breakdown Voltage} & V_{\text{GS}} = 0 \text{V}, I_{\text{D}} = 250 \text{uA} & 30 & - \\ \text{Static Drain-Source On-Resistance}^2 & V_{\text{GS}} = 10 \text{V}, I_{\text{D}} = 8 \text{A} & 15.5 \\ \hline V_{\text{GS}} = 4.5 \text{V}, I_{\text{D}} = 6 \text{A} & 21.5 \\ \hline \text{Gate Threshold Voltage} & V_{\text{DS}} = V_{\text{GS}}, I_{\text{D}} = 250 \text{uA} & 1 & 1.5 \\ \hline \text{Forward Transconductance} & V_{\text{DS}} = 10 \text{V}, I_{\text{D}} = 8 \text{A} & 15 \\ \hline \text{Drain-Source Leakage Current} & V_{\text{DS}} = 30 \text{V}, V_{\text{GS}} = 0 \text{V} & - & - \\ \hline \text{Gate-Source Leakage} & V_{\text{GS}} = \pm 12 \text{V}, V_{\text{DS}} = 0 \text{V} & - & - \\ \hline \text{Total Gate Charge} & I_{\text{D}} = 8 \text{A} & 4.1 \\ \hline \text{Gate-Source Charge} & V_{\text{DS}} = 15 \text{V} & - & 1.1 \\ \hline \text{Gate-Drain ("Miller") Charge} & V_{\text{GS}} = 4.5 \text{V} & - & 2.5 \\ \hline \text{Turn-on Delay Time} & V_{\text{DS}} = 15 \text{V} & - & 8 \\ \hline \text{Rise Time} & I_{\text{D}} = 1 \text{A} & - & 7 \\ \hline \text{Turn-off Delay Time} & R_{\text{G}} = 3.3 \Omega, V_{\text{GS}} = 10 \text{V} & - & 15 \\ \hline \text{Fall Time} & R_{\text{D}} = 15 \Omega & - & 5 \\ \hline \text{Input Capacitance} & V_{\text{GS}} = 25 \text{V} & - & 344 \\ \hline \text{Output Capacitance} & V_{\text{DS}} = 25 \text{V} & - & 48 \\ \hline \text{Reverse Transfer Capacitance} & \text{f=1.0MHz} & - & 38 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Source-Drain Diode

| Symbol          | Parameter                       | Test Conditions                           | Min. | Тур. | Max. | Units |
|-----------------|---------------------------------|-------------------------------------------|------|------|------|-------|
| $V_{SD}$        | Forward On Voltage <sup>2</sup> | I <sub>S</sub> =1.1A, V <sub>GS</sub> =0V | -    | -    | 1.0  | ٧     |
| t <sub>rr</sub> | Reverse Recovery Time           | I <sub>S</sub> = 8A, V <sub>GS</sub> =0V, | -    | 15   | -    | ns    |
| Q <sub>rr</sub> | Reverse Recovery Charge         | dI/dt=100A/µs                             |      | 14   | -    | nC    |

#### Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 3. Surface mounted on 1 in<sup>2</sup> copper pad of FR4 board, t ≤10sec; 125 °C/W when mounted on Min. copper pad.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.



## **Typical Performance Characteristics**

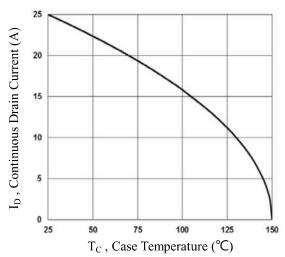



Fig.1 Continuous Drain Current vs. T<sub>c</sub>

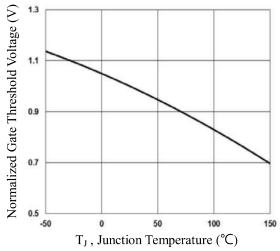



Fig.3 Normalized V<sub>th</sub> vs. T<sub>J</sub>

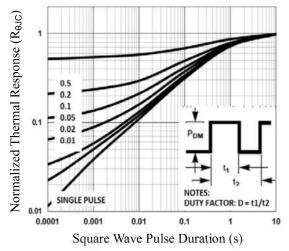



Fig.5 Normalized Transient Response

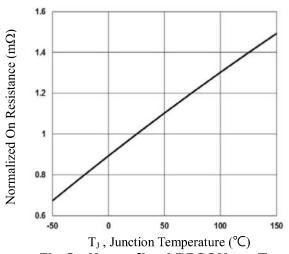



Fig.2 Normalized RDSON vs. T<sub>J</sub>

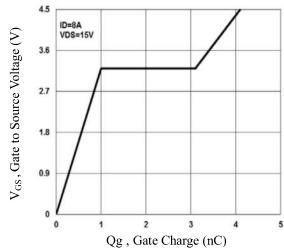



Fig.4 Gate Charge Waveform

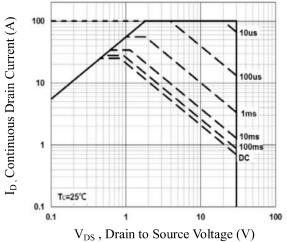



Fig.6 Maximum Safe Operation Area



## **Test Circuit**

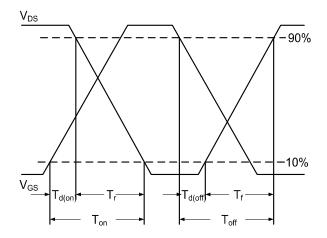



Fig.7 Switching Time Waveform

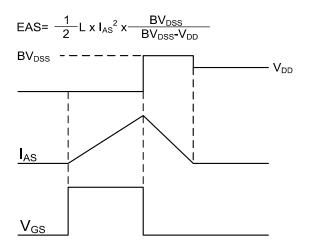
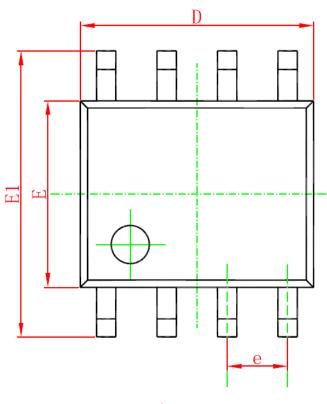
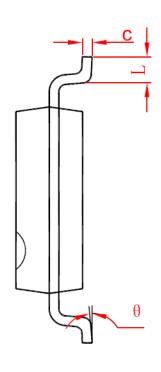
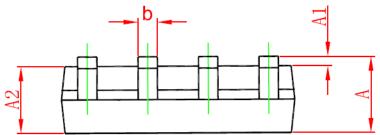



Fig.8 EAS Waveform




## **Ordering and Marking Information**


| Ordering Device No. | Marking | Package | Packing   | Quantity  |
|---------------------|---------|---------|-----------|-----------|
| ASDM3010S-R         | 3010    | SOP8    | Tape&Reel | 4000/Reel |


| PACKAGE | MARKING                               |
|---------|---------------------------------------|
| SOP8    | AS □□□ → Lot Number  3010 → Date Code |



### **SOP-8 PACKAGE IN FORMATION**







| Ch . l | Dimensions Ir | n Millimeters | Dimensions   | In Inches |
|--------|---------------|---------------|--------------|-----------|
| Symbol | Min           | Max           | Min          | Max       |
| A      | 1. 350        | 1. 750        | 0. 053       | 0. 069    |
| A1     | 0. 100        | 0. 250        | 0.004        | 0. 010    |
| A2     | 1. 350        | 1. 550        | 0.053        | 0. 061    |
| b      | 0. 330        | 0. 510        | 0. 013       | 0. 020    |
| С      | 0. 170        | 0. 250        | 0.006        | 0. 010    |
| D      | 4. 700        | 5. 100        | 0. 185       | 0. 200    |
| Е      | 3. 800        | 4. 000        | 0. 150       | 0. 157    |
| E1     | 5. 800        | 6. 200        | 0. 228       | 0. 244    |
| е      | 1. 270        | (BSC)         | 0. 050 (BSC) |           |
| L      | 0. 400        | 1. 270        | 0. 016       | 0. 050    |
| θ      | 0°            | 8°            | 0°           | 8°        |



#### **IMPORTANT NOTICE**

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com